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ABSTRACT 

Microreactors are a class of modular reactors, which have innovative 

applications in nuclear and nonnuclear industries due to their portability, 

reliability, resilience, and high capacity factors. In order to operate microreactors 

on a wider scale, it is essential to bring down maintenance life-cycle costs while 

ensuring the integrity of operating such systems. Autonomous operations in 

microreactors using augmented digital-twin (DT) technology can serve as a cost-

effective solution by increasing awareness about the system’s health. Structural 

health monitoring (SHM) is a key component of nuclear DT frameworks. 

Artificial neural networks can be beneficial to detect degradation in the nuclear 

safety systems, such as piping equipment systems, by monitoring the sensor data 

obtained from the plant and its corresponding structures, systems and 

components. In this report, an SHM methodology is presented which uses 

convolutional neural networks to determine degraded locations and their 

corresponding degradation-severity levels at various locations of nuclear piping 

equipment systems. A simple pipe system, subjected to seismic loads, is selected 

to design the post-hazard SHM framework. The effectiveness of the proposed 

SHM methodology is demonstrated by obtaining high accuracy in detecting 

degraded locations as well as the severity levels. 
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Structural Health Monitoring of Microreactor Safety 
Systems Using Convolutional Neural Networks 

1. INTRODUCTION 

Microreactors have the potential to provide factory-fabricated, safe, and transportable nuclear energy 

to civilian, industrial, and defense industries. Despite their relatively small physical footprint, they can 

provide up reliable and long-lasting clean energy that will not require refueling for years. These novel 

features open new potential for nuclear-reactor applications in traditionally non-nuclear markets. 

However, due to the smaller energy output levels of microreactors, operation and manufacturing (OM) 

costs could be significant due to economies of scale when compared to larger units. These restrictions 

limit the possibility of having as many supervisory personnel as traditional reactors. Reactor autonomy 

could enable minimized operations staffing that could allow for cost competitiveness, shorter response 

times, and newer reactor concepts. Thus, in order for microreactors to become more widespread while 

maintaining the integrity of safe operations, it is imperative that some level of autonomy be implemented. 

With advances in control algorithms and artificial intelligence, autonomy in microreactors by utilizing 

the digital-twin (DT) concept [1–7] looks achievable. In reactor autonomy, there are various degrees of 

automation, ranging from providing action alternatives to deciding and acting independently without an 

operator. Choosing a level of autonomy depends on the tradeoff between staffing, operational flexibility, 

system flexibility, and safety. A highly autonomous system should demonstrate reliability with little 

human assistance and be able to process all operating modes by planning actions based on sensor data 

and identifying the subsequent consequences of its actions. 

Artificial neural networks (ANNs) can be used to develop an autonomous reactor-control system. 

Structural health monitoring (SHM) is an important component of the DT framework for any nuclear 

power plant (NPP) [8–11]. In the proposed research, an SHM methodology is developed for the safety 

systems of nuclear reactors, such as the piping equipment systems that carry coolants (such as water, 

sodium, gas, or molten salt) to the reactor vessel and steam to the turbine. A compromise on the structural 

integrity of piping equipment systems, like a crack or fissure, can result in nuclear accidents such as a loss 

of coolant accident (LOCA). Thus, maintaining the operational functionality of such safety systems is 

required. However, the current non-destructive testing (NDT) techniques applied on nuclear piping 

equipment systems can be time and cost intensive. An SHM framework with the ability to detect locations 

with all levels of degradation—minor, moderate, or severe—could act as an additional aid to current NDT 

techniques. It could also prove to be economical by collecting sensor data from the system after an 

external-hazard scenario, such as an earthquake, and detecting degraded locations to aid NDT procedures, 

thereby reducing reactor outage periods. 

The proposed research focuses on developing an SHM framework for detecting degradation in 

nuclear safety systems, such as piping equipment systems, by employing state-of-the-art artificial 

intelligence (AI) algorithms on acquired sensor data [10, 11]. A proof of concept using convolutional 

neural networks (CNNs) is explored by collecting sensor data from high-fidelity synthetic simulations for 

a simple piping system subjected to seismic hazards. Processing large amounts of data and extracting 

degradation-sensitive features remains a fundamental challenge of any robust SHM methodology. In this 

study, signal processing and feature extraction are carried out on the acquired sensor data in order to 

create a data repository of degradation-sensitive quantities used to train the CNN algorithms. 

Effectiveness of a sensor-placement strategy is also investigated. The efficiency of the proposed AI SHM 

framework is demonstrated for a post-hazard scenario in nuclear piping-equipment systems. 
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2. OVERVIEW OF ARTIFICIAL NEURAL NETWORKS 

Deep learning through artificial neural networks can be applied in many applications that are hard to 

traditionally program such as imaging classification, speech recognition, natural language processing, and 

object tracking. They are able to model non-linear and complex problems as well as predict based on 

unseen data. Inspired by the biological neural networks, artificial neural networks (ANNs) are made of a 

group of connected artificial neurons (see Figure 1). Each neuron takes in a signal and, after processing, 

returns another signal to connecting neurons. In each node and connection (edge) there is a weight that is 

adjusted throughout the learning. Edges are neurons, usually organized in layers, that are 

interconnected. Multilayer ANNs use back-propagation where the outputs are compared with the correct 

answer and the difference is put through a loss function. Then the error is fed back through the network 

so that the model can learn from it. 

Not all problems can be solved in a linear fashion, so activation functions must be used to capture 

non-linear relationships. An activation function also makes the input more useful for the next layer. For 

example, the most-popular activation function, reLU, simply returns the input value if it is greater than 0, 

and it returns 0 if the input is less than 0. This makes it easier and faster for the model to handle. 

 

Figure 1. Single neuron. 

2.1 Feed-Forward Networks 

The simplest way to organize layers of neurons is in feed-forward layers, meaning data only moves in 

the forward direction. The first layer takes in the input, and the last layer produces outputs. The middle 

layers are called hidden layers because they are not connected to the outside world. Each neuron in the 

hidden layer gets the output of all neurons in the previous layer, and if the sum is greater than a threshold, 

the neuron returns 1. Otherwise, it returns -1. The hidden layer functions as a distiller and finds 

important features from the input and passes them to the next layer. 

When training an ANN, the network first does a forward pass and makes a prediction. The 

prediction is then compared to the correct result through a specified loss function and the error value 

is back-propagated through the network to find the gradient. Gradients are how much a network 

needs to adjust in one layer, but gradients for future layers depend on the gradient of the past layer 

(see Figure 2). This leads to a diminishing gradient which can lead to minimal learning. 
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Figure 2. Feed-forward network (FFN). 

2.2 Recurrent Neural Network 

Recurrent neural networks (RNNs) are another common class of ANNs that use time-series or 

sequential data. Instead of keeping inputs and outputs separated, as do FFNs, RNNs assume that the input 

and outputs are dependent. Outputs from previous inputs are called hidden states and are considered when 

calculating the outputs of future inputs. However, as an RNN processes more steps, it suffers from short-

term memory because it contains data of all previous outputs (see Figure 3). As with FFNs, back-

propagation leads to vanishing gradients in RNNs. As the network goes through each time stamp, the 

gradient will shrink exponentially. Smaller gradients lead to smaller adjustments in earlier layers, 

meaning they will not learn. Due to this issue, long short-term memory (LSTM) and gated recurrent unit 

(GRU) were created. By using gates, these models can minimize short-term memory through adding and 

removing from the hidden state. Despite its drawback from short-term memory, RNNs are an excellent 

choice for neural networks due to their consideration of past information and consistent model size, even 

with additional input. RNNs are not able to predict labeled data or classify data without their output being 

processed by a different type of ANN. Hence, in this study, we have not investigated RNNs. 

 

Figure 3. RNN. 
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2.3 Convolutional Neural Networks 

Convolutional neural networks (CNNs) are a class of deep neural networks that can be used for image 

classification requiring little data preprocessing. They can be used over a large amount of sensor data 

without requiring prior knowledge or human interference in feature mapping. Like other FFNs, CNNs 

contain an input layer, at least one hidden layer, and an output layer. The input layer usually is a tensor 

that has a certain shape. The convoluted layer uses convolution-kernel slides across the input and 

generates a feature map for future layers. Filter sizes and strides can be modified to optimize the model. 

The convoluted layer is customarily used adjacent to other layers, such as pooling normalization layers 

and fully connected layers. Pooling layers take the maximum or average of the current view to prevent 

overfitting the data. Fully connected layers are usually used at the end of the model to optimize objectives 

(see Figure 4). In this research, CNN architectures and key parameters, sensor placement strategy and 

various data-handling techniques are investigated as a part of the proposed SHM methodology. 

 

Figure 4. CNN. 

3. PROJECT DESCRIPTION 

Many components, along with information about their current state, can govern the operational 

functionality of nuclear facilities. One such component is the distributed piping equipment safety system, 

which connects one equipment, such as the reactor, a pump, steam generator, to another. When nuclear 

reactors have been operational for some time period, their piping equipment systems can experience pipe-

wall thinning and subsequent reduction in structural stiffness due to phenomena such as flow-assisted 

erosion and corrosion [12]. Thus, degradation in these systems can be characterized as a reduction in the 

cross-sectional area of piping elements. Usually, discontinuities, such as elbows, t-joints, and nozzles, in 

the system experience greater degradation from pipe-wall thinning [13–18]. An SHM framework can 

prove to be beneficial in extracting information about the system’s current, degraded state. This can result 

in an increased level of monitoring, control, supervision, and security by allowing the operators to obtain 

knowledge about the degradation severity at various locations of a safety system instead of relying on a 

predetermined maintenance schedule. 

Machine-learning algorithms, specifically ANNs, can be used to design a robust SHM framework and 

to detect the condition of reactor subsystems. Large amounts of sensor data can be acquired from such 

nuclear safety systems. As a subset of ANNs, CNNs can be employed as a powerful tool to process, store, 

and train on this sensor data [19]. Degradation is characterized as minor, moderate, or severe. To 

develop a post-hazard health-monitoring framework that detects degraded locations as well as the 

severity of degradation, a simple pipe system, subjected to a collection of 100 earthquakes, is selected as 

the case study. The simple piping equipment system selected for the first case study is quite similar, but 

not identical, to a United States Nuclear Regulatory Commission (USNRC) piping benchmark problem 

[20]. 
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4. METHODOLOGY 

4.1 Data Preprocessing 

Vibration-based monitoring is used for a variety of civil-engineering applications to detect changes 

that may indicate damage or degradation. A finite element model of the simple piping system was created 

using ANSYS FE software. Seismic loads were applied to the model, and high-fidelity simulations were 

carried out to acquire sensor data in the form of acceleration-time-series signals to capture the 

phenomenon of degradation in nuclear piping equipment systems. The sensor response acquired from 

simulation contains over 30 Gb of data storage. A total of nine sensor locations (as shown in Figure 5) are 

considered and degradation is assumed to occur at one location at any given time. 

 

Figure 5. Simple piping system. 

Due to the large amount of data acquired, a computationally effective data-processing and storage 

technique had to be implemented to store the acceleration-time-series data. Using the SciPy [21] short-

time Fourier transform (STFT) [22] module, the time series data of each direction of each sensor was 

transformed into a three-dimensional (3D) array with frequency, time, and STFT magnitude as its axis. 

Then the plots were cropped at 100 hz because the STFT magnitude after 100 hz was mostly zero. For 

each simulation, the STFT surface plots were consolidated into a Pickle file [23] so they could be 

compactly stored in a machine-learning data repository. Pickle storage was chosen over Tensorflow 

Records [24] due to its faster saving and loading time in this particular case study (see Figure 6). 
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Figure 6. STFT surface plot of each direction of each sensor. 

4.2 Creating the Convoluted Neural Network 

From previous literature [19], it is known that a CNN created using Python’s Keras library 

[25] can be used to analyze STFT plots. In this, a similar structure was used, but with three convolutional 

layers instead of four due to the smaller size of our plots. Because a max pooling layer sits between every 

layer to enhance feature extraction, image resolution decreases after each layer. This limits the possible 

depth of the model. A dropout, which is a percentage of neurons that are randomly ignored is also 

implemented after each layer to prevent overfitting. The two-dimensional (2D) CNN model (see Figure 7) 

is constructed to be trained over 100 epochs using the STFT data for image classification. The rectified 

linear activation function (reLU) was selected as the activation function for each layer due to its speed 

and ability to overcome the vanishing-gradient problem. Softmax was then selected as the output-layer 

activation due to its performance on multiclass classification problems. An adaptive learning rate was 

implemented so that the learning rate would decrease on plateau.  

 

Figure 7. CNN architecture. 

After feature extraction is performed by the convolutional layers, the results are fed into three dense 

layers for classification. Fewer neurons were used, as compared to the previous study, to prevent 

overfitting due to the smaller plot sizes. In order to find the most-optimal hyperparameters, a grid search 

was conducted on the values 0.01,0.001, and 0.0001 for the learning rate as well as 128, 256, and 512 for 

the batch sizes. The grid search ran all nine possibilities, and the most optimum learning rate and batch 

size were selected (Table 1). This SHM framework for the post-hazard management of nuclear safety 

systems was able to demonstrate its effectiveness in detecting degraded locations as well as the 

degradation severity. 
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Table 1. ANN training parameters. 

Parameter Value 

Activation Functions ReLu and SoftMax 

Epochs 200 

Learning Rate 0.001 

Batch Size 256 

Dropout 0.3 

Optimization ADAM 

Validation Split 30% 

 

On a traditional desktop machine (16Gb of RAM) with graphics-processing unit (GPU) capabilities, 

each epoch took about 30 minutes. Running 200 epochs on such a machine would be impractical and 

inefficient. The relative effectiveness of using a central processing unit, GPU, and tensor-processing unit 

(TPU) was explored to find a more-efficient solution. By implementing the code on Google Colaboratory 

(25 Gb of RAM) with a TPU, each epoch only took a few seconds. This opened up the possibilities of 

testing different CNN architectures and hyperparameters, as described above. 

After selecting hyperparameters, the model predicted, from the data of nine sensors, degraded 

locations and degradation levels. From previous studies [15], it was known that degradation happens 

mostly on nozzles (anchors), elbows, and T-joints of a piping system, so sensors can be reduced to just 

the four on the elbows. The model predicted both locations and degradation levels, as well locations 

using only reduced sensor data. 

5. RESULTS 

An accuracy of 99% was achieved to detect degraded locations. The proposed framework was able to 

detect degraded locations along with their severity level with a 96% prediction accuracy. For the SHM of 

real structures and systems, it is not possible to put sensors at all locations. To decrease the economic and 

computational cost of dealing with a large number of sensors, as with the nine sensors detailed in the 

previous section, this research also explored the effects of a sensor-placement strategy. Only four sensors 

at the elbows, shown in Figure 8 were selected to acquire sensor response as time-series signals. 
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Figure 8. Sensor optimization. 

The proposed SHM framework was able to predict degraded locations with 98% accuracy. A 97% 

accuracy was achieved when degradation severities were also added as the predicted output. It is 

observed that the proposed methodology is very effective for the health monitoring of the simple piping 

equipment system being considered. Even with reduced sensors, the CNN model was able to learn 

effectively, thereby increasing confidence in the selected sensor-placement strategy. The results from this 

application case study are tabulated in Table 2. When the dropout rate was increased for the 9 sensor 

framework, the model had slightly better results but it was not significant.  

Table 2. Accuracy of proposed SHM framework. 

Number of 

Sensors 

Predict Locations Predict Locations 

and Severity 

9 99% 96% 

4 98% 97% 

 

It is observed that using only four sensors with this sensor-placement strategy yields better 

prediction accuracies. The phenomenon of overfitting can reduce predictive capability of any ANN 

model. Hence, in this case study, the amount of data acquired from nine sensors overfits the 2D CNN 

model when compared to the data acquired from only four sensors. 

6. FUTURE WORK 

Due to the larger amount of data when using nine sensors, it was expected that the nine-sensor model 

would have significantly better results than the four-sensor model. This was not seen in the results due to 

overfitting. To overcome this challenge, k-fold cross-validation technique can be applied in the future. In 
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this method, the data would be split into k-many groups, and each group would be individually used as 

the test set, with the rest as a training set. 

While this model was built from a simple piping system, it provides the foundation to be applied to 

realistic nuclear piping-equipment systems more-complex systems—such as the Experimental Breeder 

Reactor-II multibranched piping system—and to predicting degradation at multiple locations within a 

system. 
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Appendix A 
 

Creating the CNN 

A-1. Initializing the Environment 

The first step in our code was to initialize what we needed to run in order to setup the data, 

neural network, and other data structures. Popular data analytic programs like Numpy, Pandas, 

and SkLearn were imported as well as Tensorflow and Keras functions. Then Google Drive was 

mounted in order to access the data (Figure 9). 

 

Figure 9. Importing analytic programs and mounting Google Drive. 

Because data for testing and training need to eventually be shuffled, we introduced a random seed so 

the random shuffle is standardized. Then we connected the file to the built in Google Colaboratory TPU 

for a faster runtime (Figure 10). 

 

Figure 10. Standardizing random shuffling of the data. 

A-2. Data Preprocessing 

Because we need to introduce damage to five nodes, ncount, the variable for node count, is set to 5. 

Then, depending on whether we are testing for all data for just the location the number of labels, 

num_labels is set to 15 (for location and degradation of 5 locations * 3 degradation levels) or five (for 

locations only). Then the Pickle data from the folder are iterated through twice for loops and appended 

into xdata and ydata (Figure 11). 
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Figure 11. Data iteration. 

The data is flattened using itertools.chain.from_itertools() so it can be easily reshaped. Then items in 

that list were converted to a numpy array with float values. The data were then normalized and then 

reshaped to fit the CNN model and converted to a tensor so it can be inputted into a neural network later 

(Figure 12). The data is then split into testing and training data. 

 

Figure 12. Data flattening. 

In order to normalize the data we divided all values with respect to the maximum value. This creates 

values between 0 and 1 for the inputs in the neural network (Figure 13). Because reLU ignores values 

under 0 and keeps values above 0, if a number is negative, data may be lost, but if a value is too large, it 

may be too-heavily weighted. 

 

Figure 13. Data normalization. 

In this function, xdata and ydata are shuffled and then split into training and testing data. 

Seventy percent of the data is set for training data, and 30% for testing. The testing data for x 

and y are then put into testX and testY respectively. Likewise, the training data for x and y were 

put into trainX and trainY (Figure 14). 
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Figure 14. Separating data between training and testing groups. 

A-3. Building the CNN 

The parameter that needed to be initialized were set such as the activation functions, pool size, kernel 

size, and number of epochs. There is an option for user input for hyperparameters such as learning rate 

and batch size for use during testing (Figure 15). 

 

Figure 15. Setting parameters and hyperparameters. 
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Our CNN structure uses 2D convolution layers as well as max pooling, dropout, and dense layers. 

The CNN has three convoluted layers, each with each subsequent layer-doubling in the number of 

neurons. All three layers use reLU as an activation function. There is a max-pooling layer after each 

convoluted layer to emphasize the features extracted in the convoluted layer. A dropout is used to prevent 

overfitting in the data. Then the output of the convoluted layers is fed into dense layers so that the dense 

layers can find the classifications after the convoluted layers extract the features (Figure 16). 

 

Figure 16. Creating the CNN. 

The testing function is what calls the cnnstructure function. In here, we set the optimizer to Adam and 

the learning rate based on what we selected in the first code block of this section. Then, depending on 

testing or training, we run the model on a validation split or testing data (Figure 17). The CNN is called 

under the TPU strategy scope so the code will be trained under the TPU. 
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Figure 17. Running the model. 

Depending on the batch size and learning rate we choose, we run all the CNN code above with the 

correct parameters. 

 

Figure 18. Final data run. 
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